Effect of the TiO2 reduction state on the catalytic CO oxidation on deposited size-selected Pt clusters.

نویسندگان

  • Simon Bonanni
  • Kamel Aït-Mansour
  • Wolfgang Harbich
  • Harald Brune
چکیده

The catalytic activity of deposited Pt(7) clusters has been studied as a function of the reduction state of the TiO(2)(110)-(1 × 1) support for the CO oxidation reaction. While a slightly reduced support gives rise to a high catalytic activity of the adparticles, a strongly reduced one quenches the CO oxidation. This quenching is due to thermally activated diffusion of Ti(3+) interstitials from the bulk to the surface where they deplete the oxygen adsorbed onto the clusters by the formation of TiO(x) (x ≃ 2) structures. This reaction is more rapid than the CO oxidation. The present results are of general relevance to heterogeneous catalysis on TiO(2)-supported metal clusters and for reactions involving oxygen as intermediate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reaction-induced cluster ripening and initial size-dependent reaction rates for CO oxidation on Pt(n)/TiO2(110)-(1×1).

We determined the CO oxidation rates for size-selected Ptn (n ∈ {3,7,10}) clusters deposited onto TiO2(110). In addition, we investigated the cluster morphologies and their mean sizes before and after the reaction. While the clusters are fairly stable upon annealing in ultrahigh vacuum up to 600 K, increasing the temperature while adsorbing either one of the two reactants leads to ripening alre...

متن کامل

Design of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols

We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-c...

متن کامل

Very small "window of opportunity" for generating CO oxidation-active Au(n) on TiO2.

Recent research in heterogeneous catalysis, especially on size-selected model systems under UHV conditions and also in realistic catalytic environments, has proved that it is necessary to think in terms of the exact number of atoms when it comes to catalyst design. This is of utmost importance if the amount of noble metal, gold in particular, is to be reduced for practical reactions like CO oxi...

متن کامل

Enhanced Electrocatalytic Activity of Pt-M (M= Co, Fe) Chitosan Supported Catalysts for Ethanol Electrooxidation in Fuel Cells

Here, metal nanoparticles were synthesized by chemical reduction of the corresponding metal salts in the presence of chitosan polymer. Binary and ternary metallic-chitosan Pt-Fe-CH, Pt-Co-CH and Pt-Fe-Co-CH nanocomposites were prepared. Transmission electron microscopy images and UV–Vis spectra of the nanocomposites confirmed the presence of the metal nanoparticles. The electrocatalytic activit...

متن کامل

Enhanced Catalytic Activity of Pt-NdFeO3 Nanoparticles Supported on Polyaniline-Chitosan Composite Towards Methanol Electro-Oxidation Reaction

In this work, NdFeO3 nanoparticles were synthesized through a simple co-precipitation method. The formation of NdFeO3 particles was verified by X-ray powder diffraction, infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy analysis. Polyaniline and chitosan were employed as proper support for production of metal nanoparticles. Novel Pt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 7  شماره 

صفحات  -

تاریخ انتشار 2012